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Abstract—>5,5’-Bis(4,5-diphenyl-2 H-imidazol-2-ylidene)-5,5 -dihydro-Az'z/-bithiophene provides a rare example of the detection of a
diradical intermediate in the cis-trans isomerization. The reversibility and the energy profiles for both the cis—trans isomerization
and the diradical formation indicate that the observed diradical is an intermediate in the cis—trans isomerization.

© 2006 Published by Elsevier Ltd.

There has been considerable interest in diradical charac-
ter of quinoid compounds.'> Chichibabin’s hydrocar-
bon 1 is a typical example and has a long history.!
Recently, Abe and co-workers have reported an interest-
ing thermal dimerization reaction of 2 in solution.?®
They proposed a mechanism of dimerization through
diradical 2™ in equilibrium with quinoid 2, where a small
energy gap (AEst = ca. 2.4 kcal mol™') between the sin-
glet quinoid ground state and the triplet diradical was
theoretically estimated. More recently, Otsubo, Aso,
and co-workers reported that extended quinoidal oli-
gothiophenes 3 with dicyanomethylene terminals exist
as equilibrium mixtures of the possible diradicals, whose
fraction4s are surprisingly high, up to 28% for heptamer 3
(n=06).

Hitherto, several Chichibabin-type dithienoquinoid ana-
logues 4 and 5 have also been synthesized. These com-
pounds showed a facile cis—trans isomerization with no
indication of diradical participation.® However, in prin-
ciple, a facile cis—trans isomerization must be related to
a weak C-C bond that can result from their diradical
character. In the course of our studies of charged and
spin systems,’” we have been interested in the titled dithi-
enoquinoid analogue 8 as an extension of thienoqui-
noids 6 and 7. Compound 6 and 7 showed strong
electron-accepting ability due to Sm-system of the imi-
dazolylidene terminals with no diradical character.®
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We report diradical participation in the cis—trans iso-
merization of 8 (Scheme 1).

Compound 10 was synthesized from the corresponding
dialdehyde 9° in 45% yield according to the general pro-
cedure for the preparation of lophines (2.,4,5-triphenyl-
imidazole) (Scheme 2).!° Oxidation of 10 using
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Scheme 1. Chichibabin’s hydrocarbon 1 and its analogues.
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Scheme 2. Preparation of 8.

K3Fe(CN)g in benzene-aqueous KOH heterogeneous
solution afforded compounds 8 in 30% yield as a deep
green solid (Anax = 735 (loge = 4.51) in CH,Cl,).

Temperature dependence of the '"H NMR spectra (in
CDCl3) is shown in Figure 1. At —20 °C, two pairs of
the doublet (H,, Hy, and H., Hy) with 1.1:1 ratio are
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Figure 1. cis—trans Isomerization of 8 (top) and 'H NMR spectra
(300 MHz) of 8 (bottom) (a) measured in CDCl; at —20, 20, 0, and
50 °C, intense peaks of aromatic protons on terminal phenyl groups
are marked by *. (b) simulation spectra with the rate constant k., of
proton-exchange.

clearly seen, indicating the presence of both the trans-
and cis-isomers.!'! Increasing the temperature broadens
the signals. The line-shape analysis (kex = ki + kc_t)
well fit the observed spectra in the temperature range be-
tween —20 and 20°C, giving AH” =12.8+0.3
keal mol~! and AS” = —3.05 + 0.95 cal K~ mol ! for
ke and AH” =13.1+03kcalmol' and AS” =
—221+095cal K 'mol™" for k. .'? The rate of
isomerization 1s comparable to that for 4 (AG” =
13.4 kcalmol™! at 7,=10°C)® but faster than that
for 5 (AG™ = 17.2 kcal mol~! at T, = 75 °C).%* Interest-
ingly, the line shape remained still broad at higher
temperatures (20-50 °C), in which the estimated ke
clearly deviates from the proton exchange process as
shown in the Eyring plots (Fig. 2a). This indicates the
presence of additional line-broadening process other
than the proton exchange.

The line-broadening at higher temperature region (20—
50 °C) was found to be derived from the presence of a
radical species. The single broad featureless radical sig-
nal was found in the EPR spectrum in CHCI; or toluene
(Supporting Information). Importantly, the signal inten-
sity increases (decreases) as the temperature increases
(decreases) and the process is reversible. Furthermore,
no decomposition product was detected by TLC after
heating. These results indicate that the observed radical
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Figure 2. (a) Eyring plots of the rate constant k., in the cis-trans
isomerization of 8 in CDCl;. The solid line is obtained from the least-
square fitting for the five data in lower temperature region. (b) The
temperature dependence of EPR signal intensity in toluene. The solid
line is theoretical curves obtained from the singlet-triplet model using
a triplet excitation energy of 3.01 kcal mol ™.
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species is not involved in irreversible processes such as
an impurity or decomposition products but as a species
in thermal equilibrium with 8. The signal intensity Igpr
was plotted as a function of 7! (Fig. 2b). The plots can
be well simulated by the singlet-triplet model Eq. 1,'3

Igpr = Cexp(—AEst/RT) /{1 + 3exp(—AEsr/RT)}1/T
(1)

where a thermally excited triplet diradical is in equilib-
rium with the singlet state according to the Boltzmann
distribution. We propose 8" as a possible diradical.
The energy gap AEst between the quinoid 8 and the
thermally excited triplet diradical 8~ was experlmentally
determined as 3.01 + 0.01 kcal mol~!, which is compa-
rable to the reported value for 2 (2. 37 kcal mol ') by
Abe and co-workers.3® The EPR signals could be ob-
served in a wide temperature range between —80 and
100 °C. The diradical quantity was roughly estimated
to be ca. 0.2% at 20 °C by comparing the signal area
to the known concentration of DPPH dissolved in a
same volume of toluene at the same EPR conditions.
The straight line observed in Eyring plots at lower tem-
peratures (—20 to 20 °C) indicates that the line broaden-
ing due to the intermolecular spin exchange between 8
and 8~ has a negligible contribution because of low con-
centration of 8. Obviously, the contribution of this
intermolecular process increases at higher temperature
because of the exponential increase of the concentration
of 8. Thus, these experiments are consistent with a pro-
posal that the observed paramagnetic species is the trip-
let diradical 8-, although rigorous identification of the
structure is rather difficult because of the structureless
EPR spectrum in solution.'* Recently reported extended
quinoidal oligothiophenes 3 and an extended viologen
also exhibited similar broad EPR signals in solution.*>

In order to obtain an insight into the energy profile of
8", we have carried out theoretical calculations
(B3LYP/6-31G™) for the closed shell singlet quinoid 8
and the open shell triplet diradical form 8~ at their opti-
mized geometries.'? The calculated AEgt value (8-
trans: 6.48 kcal mol™!, 8~-cis: 7.16 kcalmol™!) has a
somewhat larger but same order value with the observed
AEgr value (3.01 kcalmol™!), supporting 8~ as the
observed triplet diradical.

8 -cis

The diradical 8" has a small torsion angle between the
two thiophene rings and a bond length; C2-C2' =
1.423 A with a torsion angle between the two thiophene

rings of 0.4° for 8 -frans and 1.423 A with 0.2° for 8"
cis. The calculated bond length is considerably longer
than the typical thienoquinoid double bonds
(1.385 A)'6 but shorter than that for the thiophene—thio-
phene single bond (1.448 A),!” suggesting the partial
double bond character in the C2-C2’ bond in 8".

It should be noted that the diradical 8~ (8-trans and 8-
cis) partially retains its quinoid-like planar structure and
therefore does not directly lead to the cis—trans isomer-
ization. The cis—trans isomerization would undergo via a
largely twisted transition state that is brought by the
rate-determining C2-C2’ bond-rotation of 8~. In order
to estimate the rotational barrier in the diradical 8-,
we have also calculated the energies of the singlet and
triplet diradicals with the perpendicularly restricted
geometry (87-90, dihedral angle ZS-C2-C2'-S =90°)
by DFT calculations.'® The singlet and triplet diradicals
8+-90s are, almost delgenerate in their energies within
2.79 x 10~ kcal mol~" (Supporting Information). The
energy difference between 8-trans (8- cm) and 8~-90 is cal-
culated to be 11.3 (11.0) kcal mol~'. Thus, the mecha-
nism of cis-trans isomerization involving 8~ and its
C2-C2’ bond rotation can roughly reproduce the ob-
served activation enthalpy AH” value (k. ¢ AH” =
12.8 + 0.3 kcal mol™ ke ¢ AH¢—131:|:03kca1
mol ™). The plau51ble reaction path with the energy
profile is depicted in Figure 3.

In summary, 5,5’ blS(4 5-diphenyl-2 H-imidazol-2-yl-
idene)-5,5'-dihydro-A** -bithiophene 8 was found to
provide a rare example of the detection of a diradical
intermediate in the cis-trans isomerization. The pro-
ton-exchange dynamic NMR studies clarified that the
cis—trans-isomerization proceeds with the activation
parameters, AH” = 12 8 + 0.3 kcalmol ™' and AS™ =

—3.05+095cal K 'mol™! for k., and AH” =

13.1 £ 0.3 kcal mol™" and AS” = —2.21 £0.95cal K™
mol~! for k,_.. On the other hand, an additional line-
broadening process due to the spin exchange was de-
tected in DNMR and EPR studies. The EPR study
showed the presence of thermally activated triplet dirad-
ical species in equilibrium with the quinoid ground state.

4.82 kcal/mol 3.87 kcal/mol

8-cis (triplet)
8 -trans (triplet)
11.3 kcal/mol

6.48 kcal/mol 7.16 kcal/mol

8-trans quinoid 8-cis quinoid
Figure 3. Energy profile of cis—trans Isomerization in 8 obtained by
DFT calculations. The singlet and triplet diradicals 8~-90s are almost
degenerate in their energies (AEst = 2.79 x 1072 kcal mol ™).
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The energy gap between the singlet quinoid and the ther-
mally activated triplet diradical was determined as
AEgt =3.01 £+ 0.01 kcal mol~'. The triplet diradical 8"
was proposed to be an EPR-detected species. The AEgt
value and the AH” value in the cis—trans isomerization
are roughly consistent with the calculated energy profile
of 8" and the bond rotated highly twisted 8*-90.
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